An Insight in to the Crystallographic Aspects of Quinolines

Devinder Kumar Sharma ${ }^{1}$, Sumati Anthal ${ }^{2}$ and Rajni Kant ${ }^{3}$
${ }^{1,2,3}$ X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu-Tawi-180006
E-mail: ${ }^{1}$ prof.dev1979@gmail.com, ${ }^{2}$ sumatianthal@gmail.com, ${ }^{3}$ rkant.ju@gmail.com

Abstract

In this paper, an attempt has been made to carry out a crystallographic comparison of some geometrical and structural features for a series of quinoline derivatives of alkaloids. Selected bond distances and bond angles of interest in a series of quinoline derivatives have been discussed in detail, besides conformations of ring systems, their graphical presentation and their frequency of occurrence. An overview of crystal structure analysis with emphasis on the role of hydrogen bonding in some quinoline derivatives (alkaloids) is presented in this paper. The role of hydrogen bonding in quinoline derivatives has been found to be predominant and this observation makes the role of hydrogen bonding in these organic molecular assemblies very important.

1. INTRODUCTION

Alkaloids are a group of naturally occurring chemical compounds that mostly contain basic nitrogen atoms. Alkaloid containing plants have been used by humans since ancient times for therapeutic and recreational purposes. Compared with most other classes of natural product, alkaloids are characterized by great structural diversity and there is no uniform classification scheme for alkaloids. Quinoline is a heterocyclic aromatic organic compound with the chemical formula $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ (Figure 1). It is a colorless hygroscopic liquid with a strong odor. Aged samples, especially if exposed to light, become yellow and later brown. Quinoline is slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline itself has few applications, but many of its derivatives are useful in diverse applications. A prominent example is quinine, an alkaloid found in plants. 4-Hydroxy-2-alkylquinolines (HAQs) are involved in antibiotic resistance. The term includes the more specific "antibiotic resistance", which applies only to bacteria becoming resistant to antibiotics. Resistant microbes are more difficult to treat, requiring alternative medications or higher doses, both of which may be more expensive or more toxic. Microbes resistant to multiple antimicrobials are called multidrug resistant (MDR); or sometimes superbugs [1]. Quinolines are found in natural products [2] numerous commercial products including fragrances, dyes [3] and biologically active compounds [4-5] and exhibit diverse range of pharmacological activities such as anti-viral, anti-cancer, anti-bacterial, anti-fungal, anti-inflammatory [6-9]. Among
quinoline derivatives, tetrahydroquinolines (THQs) are important structural subunits of natural and synthetic products and many THQ derivatives exhibit interesting biological and pharmacological activities like anti-malarial [10] cholesteryl ester transfer protein inhibitors [11] anti-diabetic [12].

The present work provides comprehensive information about structural features and packing interactions/hydrogen bonding in quinoline derivatives. Here, we have identified a series of twenty-five derivatives of quinoline from the literature (CSD). The reference code, chemical name, chemical formula, molecular weight and published reference [13-35] of each molecule is presented in Table 1.

2. RESULTS AND DISCUSSION

2.1. Comparative Geometrical Parameters

2.1.1. Crystallization

All the molecules crystallized by slow evaporation. It is a solution technique essentially used for the growth of single crystals of organic molecules through the process of evaporation.

2.1.2. Bond distances and angles

Most of the molecules undertaken contain substitutional groups at C2 and C7 positions. Therefore, it is of interest to investigate $\mathrm{N} 1-\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{C} 7-\mathrm{C} 8$ bond distances and $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ bond angles and their data is presented in Table 2 and 3.

The substitution of groups at C 2 and C 7 positions of the quinolinal nucleus causes significant change in the value of bond distances in rings A and B , depending upon whether N1$\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{C} 7-\mathrm{C} 8$ is a single or double bond. The bond distance $\mathrm{N} 1\left(\mathrm{sp}^{3}\right)-\mathrm{C} 2\left(\mathrm{sp}^{2}\right)$ lies in the range 1.378-1.408 \AA [average value of $1.386 \AA$]. The bond distance $\mathrm{N} 1\left(\mathrm{sp}^{3}\right)$ C2 $\left(\mathrm{sp}^{2}\right)$ in molecule $11(1.378 \AA)$, $15(1.379 \AA), 17(1.379 \AA)$, $18(1.379 \AA)$ and $19(1.377 \AA)$ is shorter than the standard value of $1.383 \AA[36]$. The bond distance $\mathrm{C} 2\left(\mathrm{sp}^{2}\right)-\mathrm{C} 3\left(\mathrm{sp}^{2}\right)$ lies in the range 1.334-1.368 \AA [average value of $1.354 \AA$]. The said bond distance in molecule $5(1.347 \AA$), $7(1.346 \AA), 21(1.334 \AA)$ and
$25(1.349 \AA)$ shows a significant deviation from accepted value of $1.353 \AA$. The deviation of bond distances $\mathrm{N} 1\left(\mathrm{sp}^{3}\right)-\mathrm{C} 2\left(\mathrm{sp}^{2}\right)$ and $\mathrm{C} 2\left(\mathrm{sp}^{2}\right)-\mathrm{C} 3\left(\mathrm{sp}^{2}\right)$ could be due to the effect of some functional group located at C 2 position which invariably is involved in $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ intra/intermolecular interactions.
The bond distance $\mathrm{C} 7\left(\mathrm{sp}^{3}\right)-\mathrm{C} 8\left(\mathrm{sp}^{3}\right)$ lies in the range 1.46-1.56 \AA [average value of $1.52 \AA$]. The said bond distance in molecule $4(1.46 \AA)$ shows a significant deviation from accepted value of $1.53 \AA$ The bond distance $\mathrm{C} 6\left(\mathrm{sp}^{3}\right)-\mathrm{C} 7\left(\mathrm{sp}^{3}\right)$ lies in the range $1.44-1.57 \AA$ [average value of $1.53 \AA$]. The said bond distance in molecule $4(1.44 \AA$) shows a significant deviation from accepted value of $1.53 \AA$ [36].The deviation of bond distances $\mathrm{C} 6\left(\mathrm{sp}^{3}\right)-\mathrm{C} 2\left(\mathrm{sp}^{3}\right)$ and $\mathrm{C} 7\left(\mathrm{sp}^{3}\right)-\mathrm{C} 8\left(\mathrm{sp}^{3}\right)$ could be due to the effect of some functional group located at C 7 position.

The substitution of a group at C 2 position also causes a significant change in the value of bond angle N1-C2-C3 in ring A. The bond angle N1-C2-C3 in molecules with a substituent group at the $\mathrm{C} 2\left(\mathrm{sp}^{2}\right)$ position varies from 116.5° to 120.5° [average value of 119.8°]. The said bond angles in molecule $4\left(116.5^{\circ}\right)$ and $21\left(120.4^{\circ}\right)$ shows a significant deviation from average value of 119.8°, which may be due to the effect of some functional group located at C 2 position which invariably is involved in C-H...O/N-H...O intra/intermolecular interactions.

The substitution of a group at C 7 position also causes a significant change in the value of bond angle $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ in ring B . The bond angle $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ in molecules with a substituent group at the $\mathrm{C} 7\left(\mathrm{sp}^{3}\right)$ position varies from 106.5° to 116.8° [average value of 109.3°]. The said bond angles in molecule $1\left(116.2^{\circ}\right), 2\left(112.5^{\circ}\right), 3\left(113.4^{\circ}\right)$ and $4\left(116.8^{\circ}\right)$ shows a significant deviation from average value of 109.3°, which may be due to the effect of some functional group located at C 7 position which invariably is involved in C-H...O/N-H...O intermolecular interactions.

2.1.3. Ring conformations and their graphical representations

Asymmetry parameters ($\Delta \mathrm{C}_{2}$ and $\Delta \mathrm{C}_{\mathrm{s}}$) play an important role in describing the conformation of six-membered quinoline moiety of compounds. The asymmetry parameters have been calculated for the individual ring systems of all the molecules (1-25) and their detailed analysis shows the existence of different types of conformations. These conformations as obtained for individual ring system of quinoline moiety are presented in Table 4. The following observations can be made from the different ring conformations as adopted by individual ring A and B of molecules (1-25). The incidence of occurrence of a boat conformation in ring A is quite large (32%) followed by sofa (24%), flat boat (12%), shallow boat \& half chair (8%) and half boat, screw boat, distorted boat, pseudo boat (4\%), respectively (Figure 2a). In ring B, the incidence of occurrence of an envelope conformation is quite large (36%) followed by sofa (28%), half chair (20%), intermediate between sofa and
half chair (8%) and intermediate between envelope and half chair \& half boat (4\%), respectively (Figure 2b).

2.1.4. Hydrogen bonding

The hydrogen bond is an attractive interaction between a hydrogen atom from a molecule or a molecular fragment X-H in which X is more electronegative than H and an atom or a group of atoms in the same or a different molecule, in which there is evidence of bond formation [37]. Pauling in 1939, explained hydrogen bonding in his book The Nature of the Chemical Bond [38]. Strong and weak hydrogen bonds are discussed by Jeffrey and Saenger, in Hydrogen Bonding in Biological Structures [39].
Based on comparative data of intra- and intermolecular interactions of the types C-H...O, O-H...O, N-H...O and N-H...N/C-H...F/C-H...Cl as observed in quinoline molecules (1-25) and presented in Table 5, it has been observed that the N and O atoms are the predominant hydrogen bond donor and acceptor, respectively. The overall $\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$ range lies between 1.75 and $2.81 \AA$, the $\mathrm{D}(\mathrm{X} . . \mathrm{A})$ range is between 2.625 and $3.451 \AA$, and the angular range $\Theta(\mathrm{X}-\mathrm{H} \ldots \mathrm{A})$ falls between 103 and 176.5°. The range of values for d, D and Θ as exist in case of C-H...O, O-H...O, N-H...O and N-H...N/C-H...F/C$\mathrm{H} . . . \mathrm{Cl}$ intra- and intermolecular interactions is presented in Table 5.

The atom C acts as the most predominant hydrogen donor with frequency of occurrence at 66.7% and the O atom acts as hydrogen acceptor with frequency of occurrence at 100%. The range for $\mathrm{d}(\mathrm{H} \ldots \mathrm{A}), \mathrm{D}(\mathrm{X} \ldots \mathrm{A})$ and angular range $\Theta(X-H \ldots \mathrm{~A})$ for C-H...O and O-H...O intermolecular hydrogen bonds is presented in Table 6. In the case of intermolecular interactions, it has also been observed that the N atom acts as the most predominant hydrogen donor with frequency of occurrence 76.19% and the O atom acts as hydrogen acceptor with frequency of occurrence 90.47%. The overall range $\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$ lies between 1.75 and $2.57 \AA$, the $\mathrm{D}(\mathrm{X} \ldots \mathrm{A})$ range is between 2.625 and $3.511 \AA$ and angular range $\Theta(\mathrm{X}-\mathrm{H} . . . \mathrm{A})$ falls between 103.0 and 174.0°. The range for $\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$, $\mathrm{D}(\mathrm{X} \ldots \mathrm{A})$ and angular range $\Theta(\mathrm{X}-\mathrm{H} \ldots \mathrm{A})$ for $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}, \mathrm{N}-$ $\mathrm{H} . . \mathrm{O}$ and $\mathrm{N}-\mathrm{H} . . \mathrm{N}$ intermolecular hydrogen bonds are presented in Table 6.

2.2. Graphical presentation of interactions

The key structural feature distinguishing the hydrogen bond from the other non-covalent interactions is its preference for linearity [40]. A better way to analyse preferences, is to draw $\mathrm{d}-\Theta$ and $\mathrm{D}-\Theta$ scatter plots. The plots include all contacts found in molecules (1-25) with $\mathrm{d}<2.57 \AA$ and $\mathrm{D}<3.511 \AA$ at any occurring angle. The graphical projections of $\mathrm{d}-\Theta[\mathrm{d}(\mathrm{H} . . . \mathrm{A})$ against Θ (X-H...A)] and $\mathrm{D}-\Theta[\mathrm{D}(\mathrm{X} \ldots \mathrm{A})$ against Θ (XH...A)] scatter plots have been made for intermolecular interactions which are shown in Figure 3(a,b).

The following observations have been made:
(i) The density of spots for $\mathrm{d}(\mathrm{H} . . . \mathrm{A})[=1.87-2.39 \AA]$ and $\mathrm{D}(\mathrm{X} \ldots \mathrm{A})[=2.835-3.511 \AA]$ is presented in the theta $[\Theta(\mathrm{X}-\mathrm{H} \ldots \mathrm{A})]$ range $\sim 143.0-173.3^{\circ}$ in the case of $\mathrm{N}-$
H...O hydrogen bonds.
(ii) The density of spots for C-H...O intermolecular hydrogen bonds is quite high in a given range of
values for $\mathrm{d}(\mathrm{H} \ldots \mathrm{A})=2.39-2.57 \AA, \mathrm{D}(\mathrm{X} \ldots \mathrm{A})=$ 3.239-3.429 \AA and $\Theta(X-H . . . A)=133.0^{\circ}-152.0^{\circ}$. (iii) The relative frequency of occurrence of various types of N-H...O, C-H...O, O-H...O, N-H...N, $\mathrm{O}-\mathrm{H} . . \mathrm{N}$ and $\mathrm{C}-\mathrm{H} . . . \mathrm{Cl}$ intermolecular hydrogen bond is $71.43,16.67,2.38,4.76,2.38$ and 2.38%, respectively and it is shown in figure 4.

Table 1: CSD code, chemical name, chemical formula, molecular wt. and reference of molecules (1-25)

"Table 2. N1-C2, C2-C3, C3-C4, C4-C4a, C4a-C5, C5-C6, C6-C7 and C7-C8 bond distances (\AA) for molecules (1-25)"

"Table 3. N1-C2-C3, C2-C3-C4, C3-C4-C4a, C4-C4a-C8a, C4a-C5-C6, C5-C6-C7, C6-C7-C8 and
C7-C8-C8a bond angles $\left(^{\circ}\right.$) for molecules (1-25)"

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 5, Issue 2; January-March, 2018

M-20	120.1	121.8	109.1	119.3	119.0	113.9	107.8	113.7
M-21	120.4	121.3	112.2	120.0	119.1	114.0	110.6	111.4
M-22	119.2	120.9	110.6	119.5	118.6	113.5	107.7	113.1
M-23	119.5	120.6	109.6	124.1	118.5	115.3	107.8	113.4
M-24	119.3	122.7	109.3	118.8	118.7	114.8	107.9	113.2
M-25	119.6	119.7	109.4	120.1	117.8	111.9	110.6	110.5

"Table 4. Different types of conformations in the individual rings of Quinoline moiety (molecules 1-25)"

Molecule	Ring A (conformation)	Ring B (conformation)
M-1	Sofa	Half-chair
M-2	Boat	Sofa
M-3	Shallow boat	Envelope
M-4	Sofa	Half-chair
M-5	Sofa	Sofa
M-6	Half-chair	Half-chair
M-7	Flat boat	Sofa
M-8	Boat	Envelope
M-9	Flat boat	Envelope
M-10	Flat boat	Envelope
M-11	Sofa	Sofa
M-12	Shallow boat	Intermediate between
		envelope and half-chair
M-13	Boat	Envelope
M-14	Boat	Half-chair
M-15	Boat	Envelope
M-16	Boat	Intermediate between
	sofa and Half-chair	
M-17	Boat	Intermediate between
		sofa and Half-chair
M-18	Half-chair	Half-chair
M-19	Boat	Envelope
M-20	Sofa	Sofa
M-21	Screw boat	Envelope
M-22	Half boat	Half boat
M-23	Sofa	Sofa
M-24	Distorted boat	Envelope
M-25	Pseudo boat	Sofa

"Table 5. Geometry of C-H...O, O-H...O, N-H...O and N-H...N/C-H...F/C-H...Cl intra- and intermolecular interactions"

Molecule [Number of Donors and Acceptors]	Intramolecular interaction (X-H...A)	$\underset{\mathrm{d}}{\mathrm{H} \ldots \mathrm{~A}(\AA)}$	$\underset{\mathrm{D}}{\mathrm{X} \ldots \mathrm{~A}(\AA)}$	$\underset{\Theta}{\mathrm{X}-\mathrm{H} \ldots \mathrm{~A}\left({ }^{\circ}\right)}$
M-20	C8-H8B... 04	2.56	3.331	103
UJAHIY	C24-H24B...O4	2.38	2.756	136
Donors=3	C14-H14...O4	2.475	3.349	157
Acceptors=1				
M-21	C10-H10A...O3	2.08	2.818	132
VUJRIS				
Donor=1				
Acceptor=1				
M-22	O4-H4...O1	1.75	2.625	171
WIGWIU				
Donor=1				
Acceptor $=1$				
M-24	O3-H3C...O1	2.02	2.763	146
YASDAY				
Donor=1				
Acceptor=1				

M-14	N1-H1...O1	2.07	2.884	154
QANWEI	C20-H20A...CL1	2.81	3.511	129
Donors=3	C13-H13...O2	2.39	3.260	152
Acceptors=3				
M-15	N1-H1N...O1	2.21	2.995	160
SUYWIT	C8-H2B... 04	2.55	3.340	138
Donors=3	C10-H10B...O1	2.59	3.429	146
Acceptors=2				
M-16	N1-H1...O1	2.21	3.054	165
TEJQII Donor=1				
Acceptor=1				
M-17	N1-H1...O1	2.21	3.054	165
TEJQOO				
Donor=1				
Acceptor=1				
M-18	N1-H1A...O1	2.041	2.888	168.01
TAWQAT				
Donor=1				
Acceptor=1				
M-19	N1-H1...O5	1.96	2.835	173
UCOLOO				
Donor $=1$				
Acceptor=1				
M-20	N19-H19A...O1	2.02	2.840	156
UJAHIY	N1-H1...O1	2.13	2.911	150.2
Donors=2				
Acceptor=1				
M-21	N1-H0A...O1	2.05	2.884	163
VUJRIS				
Donor=1				
Acceptor=1				
M-22	N1-H1...O2	2.05	2.866	158
WIGWIU				
Donor=1 Acceptor=1				
M-23	N1-H1...O1	2.04	2.890	168
XAYVEA				
Donor=1				
Acceptor=1				
M-24	N6-H6B...O1	2.09	2.911	156
YASDAY	N1-H1...O2	2.14	2.892	144
Donors=5	N3-H3A...N2	2.15	2.990	159
Acceptors=5	N3-H3B...O2	2.14	2.927	148
	O3-H3D...N5	2.16	2.935	152
	N4-H4...O3	1.87	2.744	174
M-25	N1-H12...O4	2.00	2.884	164
YIYDUH				
Donor=1				
Acceptor=1				

"Table 6. Range for $\mathrm{d}(\mathrm{H} . . \mathrm{A}), \mathrm{D}(\mathrm{X} \ldots \mathrm{A})$ and $\Theta(\mathrm{X}-\mathrm{H} . . . \mathrm{A})$ for $\mathrm{C}-\mathrm{H} . . \mathrm{O}, \mathrm{O}-\mathrm{H} . . \mathrm{O}, \mathrm{N}-\mathrm{H} . . \mathrm{O}$ and $\mathrm{N}-\mathrm{H} . . \mathrm{N}$ intra- and intermolecular hydrogen bonds"

Type of bond	$\begin{aligned} & \mathbf{d}(\mathbf{H} \ldots \mathbf{A}) \\ & \operatorname{range}(\mathbf{A}) \end{aligned}$	$\begin{aligned} & \mathrm{D}(\mathrm{X} . . . \mathrm{A}) \\ & \text { range }(\boldsymbol{A}) \end{aligned}$	$\begin{aligned} & \Theta(\mathrm{X}-\mathrm{H} \ldots \mathrm{~A}) \\ & \text { range(}{ }^{\circ} \text {) } \end{aligned}$
Intramolecular			
C-H..O	2.08-2.56	2.756-3.349	103.0-157.0
O-H...O	1.75-2.02	2.625-2.763	146.0-171.0
Intermolecular			
C-H. O	2.39-2.57	3.239-3.429	133.0-152.0
N-H...N	2.12-2.15	2.990-2.966	159.0-168.0
N-H...O	1.87-2.39	2.835-3.511	143.0-174.0

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 5, Issue 2; January-March, 2018

"Figure-1: Basic quinoline molecule (C9) with atomic numbering scheme"

"Figure 2(a). Relative frequency of occurrence (in \%) for various types of conformations in six-membered ring A (molecules 1-25)"

"Figure 2(b). Relative frequency of occurrence (in \%) for various types of conformations in six-membered ring B (molecules 1-25)"

"Figure 3(a). d-Ө scatter plot for intermolecular C-H...O, OH...O, N-H...O, N-H...N, C-H...Cl and O-H..N hydrogen bonds"

"Figure 3(b). D-O scatter plot for intermolecular C-H...O, OH...O, N-H...O, N-H...N, C-H...CI and O-H..N hydrogen bonds"

"Figure 4. Relative frequency of occurrence (in \%) for various types of intermolecular hydrogen bonds"

3. CONCLUSION

On comparison of some geometrical features of the series of quinoline derivatives, it is found that substituents are located mostly at C2 \& C7 position of the quinoline nucleus. Hydrogen bonding interactions are present in these molecules and the substituents (at the $\mathrm{C} 2 \& \mathrm{C} 7$ position) which are involved in these interactions may be responsible for the lengthening and shortening of bond distances $\mathrm{N} 1-\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 3$, C6-C7 and C7-C8. Hydrogen bonding may also be responsible for deviation of $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ bond angles from its normal value. The bending in this bond angle typically amounts to only few degrees, which resembles the results shown by Desiraju and Steiner [41]. Stress has been laid to study the hybridization (single/double bond) and ring fusions for the conformation of individual ring systems and stability of quinoline molecules.

On comparing the hydrogen bond interactions, it is also concluded that the $\mathrm{N}-\mathrm{H} . . \mathrm{O}$ hydrogen bonding is quite predominant in quinoline class of alkaloids and the frequent contacts from $\mathrm{H}(\mathrm{N})$ atoms have a statistical preference to ' O ' as donor. The design of new molecules with desired properties is the future intention of chemists/ crystallographers which requires the understanding of intermolecular interactions in crystal packing. Thus, understanding of intermolecular interactions becomes important.

4. ACKNOWLEDGEMENTS

RK acknowledges the Indian Council of Medical Research, Project No. BIC/12(14)/2012 and the Department of Science and Technology Research Project No. EMR/2014/000467, New Delhi, for Financial Support.

REFERENCES

[1] "Antibiotic Resistance Questions \& Answers". Get Smart:
Know When Antibiotics Work. Centers for Disease Control and Prevention, USA, 2009.
[2] Morimoto, Y., Matsuda, F., and Shirahama, H., "Total Synthesis of (\pm)-Virantmycin and Determination of Its Stereochemistry", Synlett, 3, 1991, 202.
[3] Padwa, A., Brodney, M. A., Liu, B., Satake, K., and Wu, T., "A Cycloaddition Approach toward the Synthesis of Substituted Indolines and Tetrahydroquinolines", J.Org. Chem, 64, 1999, 3595.
[4] Markees, D. G., Dewey, V. C., and Kidder, G. W., "Antiprotozoal 4-aryloxy-2-aminoquinolines and related compounds", J.Med. Chem., 13, 1970, 324.
[5] Campbell, S. F., Hardstone, J. D., and Palmer, M. J., "2,4-Diamino-6,7-dimethoxyquinoline derivatives as .alpha.1adrenoceptor antagonists and antihypertensive agents", J. Med.Chem., 31, 1988, 1031.
[6] Roma, G., Braccio, M. D., Grossi, G., Mattioli, F., and Ghia, M.," 1,8 -Naphthyridines IV. 9-Substituted N, N - dialkyl-5(alkylamino or cycloalkylamino) [1,2,4] triazolo $[4,3 \mathrm{a}][1,8]$ naphthyridine-6-carboxamides,
new compounds with anti-aggressive and potent anti-
inflammatory activities", Eur.J. Med.Chem., 35, 2000, 1021.
[7] Chauhan, P. M. S., and Srivastava, S. K., "Present trends and future strategy in chemotherapy of malaria", Curr. Med. Chem. 8, 2001, 1535.
[8] Chen, Y. L., Fang, K. C., Sheu, J. Y., Hsu, S. L., and Tzeng, C., "Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives", J. Med. Chem., 44, 2001, 2374.
[9] Mogilaiah, K., Chowdary, D. S., and Rao, R. B., "Synthesis and antibacterial activity of pyrazole and $1,3,4$ - oxadiazole derivatives of 2-phenyl-1,8-naphthyridine", Indian J.Chem., 40B, 2001, 43.
[10] Bulbule, V. J., Rivas, K., Verlinde, C. L. M. J., Van Voorhis, W.C., and Gelb, M. H., "2-Oxotetrahydro quinoline-Based Antimalarials with High Potency and Metabolic Stability", J. Med. Chem., 51, 2008, 384.
[11] Rano, T. A., McMaster, E. S., Pelton, P. D., Yang, M., Demarest, K. T., and Kuo, G. H., "Design and synthesis of potent inhibitors of cholesteryl ester transfer protein (CETP) exploiting a 1,2,3,4-tetrahydroquinoline platform", Bioorg. Med.Chem. Lett., 19, 2009, 2456.
[12] Kim, H., Gim, H., Yang, M., Ryu, J. H., and Jeon, R., "Design, Synthesis, and Evaluation of Tetrahydro quinoline-Linked Thiazolidinedione Derivatives as PPARy Selective Activators", Heterocycles, 71, 2131 2007, 2131.
[13] Dong'e Wang, Yu-zhou Wang, and Muhtar Turhong, "(RS)-3-Acetyl-2-methyl-4-(3-nitrophenyl)-1,4,5,6,7,8-hexahydro quinolin-5-one", Acta Crystallogr.,Sect.E:Struct.Rep.Online ,65, 2009, o2561.
[14] Bulbul, B., Ozturk, G. S., Vural, M., Simsek, R., Sarioglu, Y., Linden, A., Ulgen, M., and Safak, C., "Condensed 1,4-
dihydropyridines with various esters and their calcium channel antagonist activities", Eur.J. Med.Chem.,44, 2009, 2052.
[15] Linden, A., Simsek, R., Gundz, M., and Safak, C., "(+)-Methyl and (+)-ethyl 4-(2,3-di-fluorophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate", Acta Crystallogr., Sect.C: Cryst. Struct. Commun., 61, 2005, o731.
[16] Carroll, W. A., Agrios, K. A., Altenbach, R. J., Buckner, S. A., Yiyuan Chen., Coghlan, M. J., Daza, A. V., Drizin, I., Gopalakrishnan, M., Henry, R. F., Kort, M. E., Kym, P. R., Milicic, I., Smith, J. C., Rui Tang., Turner, S. C., Whiteaker, K. L., Zhang, H., and Sullivan, J. P., "Synthesis and StructureActivity Relationships of a Novel Series of Tricyclic Dihydropyridine-Based KATP Openers That Potently Inhibit Bladder Contractions in Vitro", J.Med.Chem., 47, 2004, 3180.
[17] Shao-Jun Song., Zi-Xing Shan., and Yong Jin., "One-Pot Synthesis of Hexahydroquinolines via Hantzsch Four Component Reaction Catalyzed by a Cheap Amino Alcohol", Synth.Commun., 40, 2010, 3067.
[18] Kumar, S., Sharma, P., Kapoor, K. K., and Hundal, M.S.,
"An efficient, catalyst- and solvent-free, four- component, and onepot synthesis of polyhydro quinolines on grinding", Tetrahedron., 64, 2008, 536.
[19] Jing-Min Zhao., "DL-Methyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate", Acta Crystallogr.,Sect.E:Struct. Rep. Online., 68, 2012, o745.
[20] Chen-Xia Yu., Da-Qing Shi., Chang-Sheng Yao., Xiang-Shan Wang., and Qi-Ya Zhuang., "Methyl 2-methyl-5- oxo-4-p-tolyl-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate",

Acta Crystallogr., Sect.E: Struct.Rep .Online., 61, 2005, o3224.
[21] Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L., and Natale, N. R.,"The effect of bromine scanning around the phenyl group of 4-phenylquinolone derivatives", Acta Crystallogr., Sect.C:Cryst.Struct.Chem., 70, 2014, 790.
[22] Kant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Mulik, A. G., and Deshmukh, M.B., "2-Amino-7,7-dimethyl-5- oxo-4-[3-(trifluoromethyl)phenyl]-1,4,5,6,7,8-hexa hydroquinoline-3carbonitrile", Acta Crystallogr.,Sect. E:Struct. Rep.Online., 69, 2013, o105.
[23] Linden, A., Safak, C., and Aydin, F., "Methyl 4-(2- chloro-5-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6, 7,8-Hexahydroquinoline-3-carboxylate", Acta crystallo gr.,Sect.C:Cryst.Struct.Commun., 60, 2004, o711.
[24] Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V., and Srinivasan, N., "Ethyl 4-(3- hydroxy phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8- hexahydroquinoline-3carboxylate",Acta Crystallogr., Sect.E: Struct.Rep.Online., 65, 2009, 02664.
[25] Yu-Ling Li., Bai-Xiang Du., Xiang-Shan Wang., Mei- Mei Zhang., and Zhao-Sen Zeng., "Methyl 4-(3-chloro phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro quinoline-3carboxylate", Acta Crystallogr.,Sect.E: Struct.Rep.Online., 61, 2005, o1634.
[26] Natarajan, S., Indumathi, P., Reddy, B. P., Vijayakumar, V., and Lakshman, P. L. N., "Ethyl 2-methyl-5-oxo-4- (3,4,5-trimethoxyphenyl)-1,4,5,6,7,8-exahydroquinoline - 3carboxylate",Acta Crystallogr.,Sect.E:Struct. Rep. Online., 66, 2010, o2240.
[27] Morales, A. D., Garcia-Granda, S., Navarro, M. S., Diviu, A. M., and Perez-Barquero, R. E., " 5 -oxo- $1,4,5,6,7,8$ -Hexahydroquinoline-3-carboxylate and 3-Acetyl-2,7,7-trimethyl-4-phenyl-1,4,5,6,7,8-hexahydro", ActaCrystallogr., Sect. C:Cryst. Struct. Commun., 52, 1996, 2356.
[28] Khan, B., Minhaz, A., Ihsan Ali., Nadeem, S., Yousuf, S., Ishaq, M., and Shah, M. R., "Fluorescent supra Molecular tweezers for selective recognition of cephradine", Tetrahedron Lett., 56, 2015, 581.
[29] Linden, A., Gunduz, M. G., Simsek, R., and Safak, C., "Cocrystals of diastereoisomers of 1,4-dihydropyridine derivatives",ActaCrystallogr.,Sect.C:Cryst.Struct. Commun., 62, 2006, o227.
[30] Kant, R., Gupta, V. K., Anthal, S., Sharma, P., Patil, D. R., Mulik, A. G., and Deshmukh, M. B., "Synthesis and Crystal Structure of 2-amino-7, 7-dimethyl-4-(4- nitrophenyl)-5-oxo-1, 4, 5, 6, 7, 8- hexahydroquinoline-3- carbonitrile", Europ.Chem. Bull., 3, 2014, 296.
[31] Xiao-Hui Yang., Yong-Hong Zhou., Meng Zhang., and Xing Song., "Methyl 4-(4-methoxyphenyl)-2-methyl-5- oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate", Acta Crystallogr., Sect.E: Struct.Rep.Online., 66, 2010, o2767.
[32] Kurbanova, M. M., Huseynov, E. Z., Gurbanov, A. V., Maharramov, A. M., and Kia, R., "Ethyl 4-(5-bromo-2-Hydroxylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8hexahydroquinoline - 3-carboxylate",Acta Crystallogr., Sect.E:Struct.Rep.Online., 69, 2013, 0541.
[33] Kurbanova, M. M., Huseynov, E. Z., Gurbanov, A. V., Maharramov, A. M., and Ng, S.W., "Ethyl 2,7,7- trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydro quinoline-3carboxylate",ActaCrystallogr.,Sect.E: Struct. Rep.Online., 68, 2012, o2233.
[34] Shujiang Tu., Jinpeng Zhang., Xiaotong Zhu., Jianing Xu., and Qian Wang., "2-Amino-7,7-dimethyl-5-oxo-4- phenyl-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile hemihydrates", ActaCrystallogr., Sect. E:Struct. Rep. Online., 61, 2005, 0983.
[35] Gein, V. L., Kazantseva, M. I., Gein, L. F., and Slepukhin, P. A., "Synthesis of Alkyl 4-Aryl-2-methyl- 5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylates", Russ.J.Org.Chem., 50, 2014, 247.
[36] Sutton, L. E., "Tables Of Interatomic Distances And Configuration In Molecules And Ions", The Chemical Society, London., 18, 1965.
[37] Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Carbtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H.G., Legon, C., Mennucci, B., and Nesbitt, D, J., "Definition of the hydrogen bond (IUPAC Recommendations 2011)", Pure Appl.Chem., 83, 2011, 1637.
[38] Pauling, L., "The Nature of the Chemical Bond, Cornell University Press", NY., 1939.
[39] Jeffrey, G. A., and Saenger, W., " Hydrogen Bonding in Biological Structure, Springer-Verlag, Berlin" 1991.
[40] Steiner, T., "The Hydrogen Bond In The Solid State", Angew Chem. Int. Ed. Engl., 41,1, 2002, 48.
[41] Desiraju, G. R., and Steiner, T., "The Weak Hydrogen Bond in Structural Chemistry and Biology", IUCr/Oxford University Press., 1999.

